Authors: Florence Aeschelmann, Michael Carus and the nova bio-based expert group, nova-Institute, Germany

This and other reports on the bio-based economy are available at www.bio-based.eu/reports
Bio-based Building Blocks and Polymers – Global Capacities and Trends 2016–2021

1 Global Capacities and Trends 2016–2021

1.1 Bio-based polymers worldwide: Ongoing growth despite difficult market environment

1.2 Introduction

1.3 Study background

1.4 Methodology

1.5 Results

1.5.1 Share of bio-based polymers in the total polymer market

1.5.2 Bio-based polymers

1.5.3 Bio-based building blocks as a precursor of polymers

1.5.4 Investment by region

1.5.5 Market segments

1.6 Content of the Comprehensive market data package

1.7 Figures

2 Production capacity data for selected building blocks and polymers

2.1 Bio-based building blocks

2.1.1 1,3-Propanediol (1,3-PDO)

2.1.2 1,4-Butanediol (1,4-BDO)

2.1.3 1,5-Pentamethylenediamine (DN5)

2.1.4 11-Aminoundecanoic acid (11-AA)

2.1.5 2,5-Furandicarboxylic acid (2,5-FDCA)

2.1.6 Adipic acid (AA)

2.1.7 Dodecanedioic acid (DDDA)

2.1.8 D-Lactic acid (D-LA)

2.1.9 Epichlorhydrin (ECH)

2.1.10 Ethylene

2.1.11 Isosorbide

2.1.12 L-Lactic acid (L-LA)

2.1.13 Lactide

2.1.14 Monoethylene glycol (MEG)

2.1.15 Monopropylene glycol (MPG)

2.1.16 Sebacic acid

2.1.17 Succinic acid (SA)

2.2 Bio-based polymers

2.2.1 Cyclic aliphatic polycarbonate (APC – cyclic)

2.2.2 Linear aliphatic polycarbonate (APC – linear)

2.2.3 Ethylene propylene diene monomer rubber (EPDM)

2.2.4 Polymides (PA)

2.2.5 Poly(butylene adipate-co-terephthalate) (PBAT)

2.2.6 Polybutylene succinate (PBS)

2.2.7 Polyethylene (PE)

2.2.8 Polyethylene furanoate (PEF)

2.2.9 Polyethylene terephthalate (PET)

2.2.10 Polyhydroxyalkanoates (PHA)

2.2.11 Polylactic acid (PLA)

2.2.12 Polytrimethylene terephthalate (PTT)

2.2.13 Starch blends
Company product index: 70 bio-based building-blocks and polymers and their producers ...66

The producers of bio-based building blocks and polymers: 104 Company profiles..........76

<table>
<thead>
<tr>
<th>Company Name</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced Biochemical (Thailand) Co., Ltd.</td>
<td>76</td>
</tr>
<tr>
<td>Anhui COFCO Biochemical & GALACTIC Lactic Acid Co., Ltd.</td>
<td>77</td>
</tr>
<tr>
<td>AnoxKaldnes</td>
<td>78</td>
</tr>
<tr>
<td>Anqing Hexing Chemical Co., Ltd.</td>
<td>79</td>
</tr>
<tr>
<td>Arizona Chemical Company LLC</td>
<td>80</td>
</tr>
<tr>
<td>Arkema SA</td>
<td>81</td>
</tr>
<tr>
<td>Attero</td>
<td>84</td>
</tr>
<tr>
<td>Avantium Technologies B.V.</td>
<td>85</td>
</tr>
<tr>
<td>BASF SE</td>
<td>87</td>
</tr>
<tr>
<td>Bio-on S.p.A.</td>
<td>90</td>
</tr>
<tr>
<td>BioAmber Inc.</td>
<td>91</td>
</tr>
<tr>
<td>BioBased Technologies LLC</td>
<td>96</td>
</tr>
<tr>
<td>BioMatera Inc.</td>
<td>98</td>
</tr>
<tr>
<td>Bioplastech Ltd.</td>
<td>99</td>
</tr>
<tr>
<td>BIOTEC Biologische Naturverpackungen GmbH & Co. KG</td>
<td>100</td>
</tr>
<tr>
<td>BluePHA Co., Ltd.</td>
<td>101</td>
</tr>
<tr>
<td>Braskem S.A.</td>
<td>102</td>
</tr>
<tr>
<td>Carbiolice</td>
<td>104</td>
</tr>
<tr>
<td>Cargill Inc.</td>
<td>106</td>
</tr>
<tr>
<td>Cathay Industrial Biotech, Ltd.</td>
<td>107</td>
</tr>
<tr>
<td>Cellulac</td>
<td>109</td>
</tr>
<tr>
<td>Chengdu Dikang Biomedical Co., Ltd.</td>
<td>110</td>
</tr>
<tr>
<td>China New Materials Holdings Ltd.</td>
<td>111</td>
</tr>
<tr>
<td>Chongqing Bofei Biochemical Products Co., Ltd.</td>
<td>112</td>
</tr>
<tr>
<td>Corbion Purac</td>
<td>113</td>
</tr>
<tr>
<td>Covestro AG</td>
<td>116</td>
</tr>
<tr>
<td>Cristal Union</td>
<td>118</td>
</tr>
<tr>
<td>Danimer Scientific LLC</td>
<td>119</td>
</tr>
<tr>
<td>DSM N.V.</td>
<td>120</td>
</tr>
<tr>
<td>DuPont</td>
<td>122</td>
</tr>
<tr>
<td>DuPont Tate & Lyle Bio Products Company, LLC</td>
<td>125</td>
</tr>
<tr>
<td>EggPlant</td>
<td>126</td>
</tr>
<tr>
<td>Evonik Industries AG</td>
<td>127</td>
</tr>
<tr>
<td>Far Eastern New Century Corporation</td>
<td>128</td>
</tr>
<tr>
<td>Futerro</td>
<td>129</td>
</tr>
<tr>
<td>Galactic</td>
<td>130</td>
</tr>
<tr>
<td>Genomatica, Inc.</td>
<td>132</td>
</tr>
<tr>
<td>Global Bio-Chem Technology Group Co., Ltd.</td>
<td>134</td>
</tr>
<tr>
<td>Henan Jindan Lactic Acid Technology Co., Ltd.</td>
<td>136</td>
</tr>
<tr>
<td>Hubei Guangshui National Chemical Co., Ltd.</td>
<td>137</td>
</tr>
<tr>
<td>Hunan Anhua Lactic Acid Company</td>
<td>138</td>
</tr>
<tr>
<td>India Glycols Limited</td>
<td>139</td>
</tr>
<tr>
<td>Indorama Ventures Public Company Limited</td>
<td>140</td>
</tr>
<tr>
<td>Jiangsu Clean Environmental Technology Co., Ltd.</td>
<td>141</td>
</tr>
<tr>
<td>Jinhui Zhaolong High Technology Co., Ltd.</td>
<td>142</td>
</tr>
</tbody>
</table>
4.46 Kaneka Corporation ...143
4.47 Kingfa Sci. & Tech. Co., Ltd. ..144
4.48 KNN Bioplastic ...146
4.49 LANXESS AG ...147
4.50 LOTTE Fine Chemical Co., Ltd. ...148
4.51 Lukang Pharmaceutical Co., Ltd. ..150
4.52 Mango Materials ..151
4.53 Meredian Holdings Group (MHG)152
4.54 Merquinsa S.A. ..154
4.55 Metabolix Inc. ...155
4.56 Mitsubishi Chemical Corporation (MCC)157
4.57 Moore Capital ..159
4.58 Musashino Chemical Laboratory, Ltd.160
4.59 Myriant Corporation ..161
4.60 Nafigate Corporation ..163
4.61 Nantong Jiuding Biological Engineering Co., Ltd.164
4.62 NatureWorks LLC ..165
4.63 Newlight Technologies LLC ...167
4.64 Novamont S.p.A. ..169
4.65 Novomer Inc. ..171
4.66 Paques ...173
4.67 PHB Industrial S.A. ..174
4.68 Pizzoli S.p.A. ..175
4.69 Plaxica Ltd. ..176
4.70 PolyFerm Canada Inc. ..177
4.71 PTT MCC Biochem Co., Ltd. ...178
4.72 Rennovia Inc. ...179
4.73 Reverdia ..181
4.74 Rodenburg Biopolymers B.V...183
4.75 Roquette ...184
4.76 SECI S.p.A. ..185
4.77 Shandong Fuwin New Material Co., Ltd.186
4.78 Shanghai Tong-Jie-Liang Biomaterials Co., Ltd.187
4.79 Shantou Liangyi ..188
4.80 Shenzhen Bright China Biotechnological Co., Ltd.189
4.81 Shenzhen Ecomann Biotechnology Co., Ltd.190
4.82 Showa Denko K.K. ...191
4.83 Solvay S.A. ..192
4.84 Succinity GmbH ...193
4.85 Sulzer Chemtech AG ..194
4.86 SUPLA Material Technology Co., Ltd.195
4.87 Surakshit Parivar Biotech Pvt. Ltd.196
4.88 Suzhou Hydal Biotech ..197
4.89 Synbra Technology B.V. ..198
4.90 Teijin Limited ...199
4.91 TerraVerda BioWorks Inc. ...201
4.92 The Dow Chemical Company ..202
4.93 The Woodbridge Group ..203
4.94 thyssenkrupp Uhde GmbH ..204
5 Qualitative analyses of selected bio-based polymers (without separate trend report)......217
5.1 Cellulose Acetate (CA) ..217
 5.1.1 History and production...217
 5.1.2 Typical characteristics and properties..217
 5.1.3 Market and applications..218
 5.1.4 References...219
5.2 Thermosets ...220
 5.2.1 Epoxies..221
 5.2.2 Polyurethanes (PUR)..222
 5.2.3 Unsaturated polyester resins (UPR) ...223

6 GreenPremium Prices Along the Value Chain of Bio-based Products224
6.1 Initial questions ..224
6.2 Methodology ..225
6.3 Definition of “GreenPremium” prices...225
6.4 GreenPremium prices do exist..226
6.5 Results of the LinkedIn survey in the bio-based community..............................227
6.6 GreenPremium price ranges – the full picture...227
6.7 Examples of GreenPremium prices...229
6.8 Main drivers for emotional and strategic performance.......................................231
6.9 GreenPremium in the automotive sector...233
6.10 Some actors fail to receive a GreenPremium..234
6.11 GreenPremium for Biofuels?...234
6.12 Green Premium for Bio-based Plastics – first results from the survey in 2016 & 2017
 6.12.1 Are there GreenPremium prices for bio-based plastics?...............................235
6.13 Summary – GreenPremium prices along the value-added chain from bio-based
 chemicals to products ..237
6.14 References..238
6.15 Appendix...240

7 List of figures ...243

8 List of tables (Additional tables in chapter 4)..245

9 List of acronyms ...247
Authors

Florence Aeschelmann, nova-Institute
Florence Aeschelmann (MSc) (Germany), materials engineer, was a staff scientist in the Technology and Markets department at nova Institute until January 2017. Her main focus is on bio-based materials, especially bio-based polymers. She is well acquainted with the global market for bio-based polymers and building blocks.

Michael Carus Managing Director, nova-Institute
Physicist, co-founded in 1994 nova-Institute and has been functioning as owner and Managing Director since then. More than 30 years experience in the field of bio-based economy, including work on biomass feedstocks, industrial biotechnology and all kinds of bio-based materials. His work focuses on market analysis, techno-economic and ecological evaluation and creating a suitable political and economic framework for bio-based processes and applications.

Lara Dammer, nova-Institute
Lara Dammer studied Political Science, English and History with a focus on International Relations at Bonn University. After graduating (M.A.), she worked in project management, communication and consulting for several projects in Germany and the Philippines.
Lara Dammer joined nova-Institute in 2012 and has been working on policy and strategy since then. The focal points of her work are the political framework for the material use of renewable raw materials, national and international resource and environmental policy, data framework, standardisation and certification of bio-based products, market analysis as well as dissemination and communication. She manages several national and international projects. In 2016 Lara Dammer became head of the sustainability department.
Dr. Asta Partanen, Expert on WPC, Wood & Bio-based Materials, nova-Institute Dr. rer. nat. Asta Eder is one of the leading market experts on bio-based plastics and composites, especially on Biocomposites. She has been conducting market research and consulting for the development of new bio-based composites and their applications for the last 16 years. Since 2013 Dr. Eder has been working at nova-Institute in the field of standardisation and certification of bio-based composites and WPC.

Wolfgang Baltus (Thailand) worked for BASF for 15 years and was responsible for the business development of environmental friendly coatings in Asia. From 2008 until 2015, Baltus worked for the National Innovation Agency (NIA) and for Precise Corporation in Bangkok. In 2016, he founded its own independent consultancy, Wobalt Expedition Consultancy. He is regarded as one of the leading experts on bio-based polymer markets and policy in Asia.

Doris de Guzman (BSChE) (USA) joined UK-based Tecnon OrbiChem in March 2013 as a senior consultant covering bio-based chemicals feedstocks for the company’s Bio-Materials Chemical Business Focus newsletter published every month. Doris has been covering the business of green chemistry for more than 16 years and provides expertise on oleochemicals, biofuels, biopolymers, industrial biotechnology and other renewable chemical products as creator and author of the Green Chemicals Blog. The blog has an average 15,000 to 20,000 unique readers per month.

Harald Käb (PhD) (Germany) is a chemist and has an unblemished 20-year “bio-based chemistry and plastics” track record. From 1999 to 2009 he chaired the board and developed “European Bioplastics”, the association representing the bioplastics industry in Europe. Since 1998 he has been working as an independent consultant, servicing green pioneers and international brands to develop and implement smart business, media and policy strategies for bio-based chemicals and plastics.

Jan Ravenstijn (MSc) (The Netherlands) has more than 35 years of experience in the chemical industry (Dow Chemical and DSM), including 15 years in executive global R&D positions in engineering plastics, thermosets and elastomers, based in Europe and in the USA. He is currently a consultant to producers, investors and consulting companies involved in bio-based monomer or polymer activities, member of the Scientific Advisory Board of the Aachen-Maastricht Biomaterials Institute and has published several papers and articles on the market development of bio-based monomers and polymers. He is regarded as one of the world’s leading experts in his field.
Further contribution from:

Constance Ißbrücker (Germany) holds a degree from the University of Jena, Germany, specialized in macromolecular and bioorganic chemistry. Before joining European Bioplastics in 2013, she worked in different research groups at universities in Berlin and Jena where she gained valuable experience in the modification and analysis of polysaccharide derivatives and the synthesis of chiral amines by biocatalytic processes. In 2016, she has been promoted to Head of Environmental Affairs at European Bioplastics and is, among other things, responsible for the Product Groups Biobased and Biodegradables and the Seedling trademark.

Kristy-Barbara Lange (Germany) is Deputy Managing Director at European Bioplastics and responsible for regulatory affairs. She manages the EUBP Working Group Regulatory Affairs and together with Hasso von Pogrell represents EUBP’s members’ interests vis-à-vis the European institutions. She joined EUBP in 2010 after working for several years in international PR-agencies with a focus on the industry sectors infrastructure and (renewable) energy. Her clients comprised Swiss natural gas pipeline builder Nord Stream and Norwegian solar panel manufacturer REC. She holds a Master degree in Political Science from Heidelberg University, Germany.

Hasso von Pogrell (Germany) has been Managing Director of European Bioplastics since March 2009. Upon completion of his education in Germany and a two-year term of military services, he studied Economics at the University of Cologne where he graduated in 1994. He began his political career as a lobbyist in 1995, when he joined the Germany Industry Association for Optical, Medical and Mechatronical Technologies. There he was responsible for public relations and economics. After a two-year stint as General Manager at the Federal Association of the German Medium and Large Retail Enterprises, he returned to the industry sector. As Head of Department for Foreign Affairs at the Association of the German Construction Industry and Assistant Director of the European International Contractors (EIC), he served the construction industry for seven years from 2000 to 2007. He directed the affairs of the Association of the German Sawmill Association as its Managing Director between 2007 and 2009.

Stefan Zepnik (Germany), Fraunhofer UMSICHT
The authors are part of nova-Institute’s biopolymer expert group. More reports of expert group members are available at www.bio-based.eu/reports

Free papers and all services of nova-Institute are available at www.bio-based.eu
7 List of figures

Figure 1: Polymers worldwide, bio-based shares (nova-Institute 2015)..16
Figure 2: Worldwide, European and bio-based plastics production from 1950 to 2014 (nova-Institute 2015) ..17
Figure 3: Global production capacities of bioplastics (European Bioplastics 2016)...18
Figure 4: Global production capacities of bioplastics 2016 (by material type) (European Bioplastics 2016) ..19
Figure 5: Global production capacities of bioplastics 2021 (by material type) (European Bioplastics 2016) ..19
Figure 6: Bio-based polymers: Evolution of worldwide production capacities from 2011 to 2021 (nova-Institute 2016), please see also the figure on the cover ..20
Figure 7: Selected bio-based polymers: Evolution of worldwide production capacities from 2011 to 2021 (nova-Institute 2016) ..21
Figure 8: Pathways to bio-based polymers (nova-Institute 2016) ...24
Figure 9: Selected bio-based building blocks: Evolution of worldwide production capacities from 2011 to 2021 (nova-Institute 2016). ..25
Figure 10: Global production capacities of bioplastics in 2016 (by region) (European Bioplastics 2016)27
Figure 11: Global production capacities of bioplastics in 2016 (by region) (European Bioplastics 2016)28
Figure 12: Bio-based polymers: Evolution of production capacities in Europe from 2011 to 2021 (without thermosets and cellulose acetate) (nova-Institute 2016)29
Figure 13: Global production capacities of bioplastics 2016 (by market segments) (European Bioplastics 2016) ..30
Figure 14: Global production capacities of bioplastics 2021 (by market segments) (European Bioplastics 2016) ..31
Figure 15: Worldwide shares of bio-based polymers production in different market segments in 2016 and 2021 (nova-Institute 2016) ..32
Figure 16: Shares of market segments per bio-based polymer in 2016 (nova-Institute 2016)33
Figure 17: Worldwide production capacities of 1,3-propanediol (1,3-PDO) by region in 2011–2021 (in tonnes) ..36
Figure 18: Worldwide production capacities of 1,4-butanediol (1,4-BDO) by region in 2011–2021 (in tonnes)37
Figure 19: Worldwide production capacities of 1,5-pentamethylenediamine (DN5) by region in 2011–2021 (in tonnes) ..38
Figure 20: Worldwide production capacities of 11-aminoundecanoic acid (11-AA) by region in 2011–2021 (in tonnes) ..39
Figure 21: Worldwide production capacities of 2,5-furandicarboxylic acid (2,5-FDCA) by region in 2011–2021 (in tonnes) ...40
Figure 22: Worldwide production capacities of adipic acid (AA) by region in 2011–2021 (in tonnes)...41
Figure 23: Worldwide production capacities of dodecanedioic acid (DDDA) in 2011–2021 (in tonnes)42
Figure 24: Worldwide production capacities of D-lactic acid (D-LA) by region in 2011–2021 (in tonnes) ...43
Figure 25: Worldwide production capacities of epichlorohydrin (ECH) by region in 2011–2021 (in tonnes) 44
Figure 26: Worldwide production capacities of ethylene by region in 2011–2021 (in tonnes)45
Figure 27: Worldwide production capacities of isosorbide by region in 2011–2021 (in tonnes)46
Figure 28: Worldwide production capacities of L-lactic acid (L-LA) by region in 2011–2021 (in tonnes) ... 47
Figure 29: Worldwide production capacities of lactide by region in 2011–2021 (in tonnes) ... 48
Figure 30: Worldwide production capacities of monoethylene glycol (MEG) by region in 2011–2021 (in tonnes) ... 49
Figure 31: Worldwide production capacities of monopropylene glycol (MPG) by region in 2011–2021 (in tonnes) ... 50
Figure 32: Worldwide production capacities of sebacic acid by region in 2011–2021 (in tonnes) ... 51
Figure 33: Worldwide production capacities of succinic acid (SA) by region in 2011–2021 (in tonnes) ... 52
Figure 34: Worldwide production capacities of cyclic aliphatic polycarbonate (APC – cyclic) by region in 2011–2021 (in tonnes) ... 53
Figure 35: Worldwide production capacities of linear aliphatic polycarbonate (APC – linear) by region in 2011–2021 (in tonnes) ... 54
Figure 36: Worldwide production capacities of ethylene propylene diene monomer rubber (EPDM) by region in 2011–2021 (in tonnes) ... 55
Figure 37: Worldwide production capacities of polyamides (PA) by region in 2011–2021 (in tonnes) ... 56
Figure 38: Worldwide production capacities of poly(butylene adipate-co-terephthalate) (PBAT) by region in 2011–2021 (in tonnes) ... 57
Figure 39: Worldwide production capacities of polybutylene succinate (PBS) by region in 2011–2021 (in tonnes) ... 58
Figure 40: Worldwide production capacities of polyethylene (PE) by region in 2011–2021 (in tonnes) ... 59
Figure 41: Worldwide production capacities of polyethylene furanoate (PEF) by region in 2011–2021 (in tonnes) ... 60
Figure 42: Worldwide production capacities of polyethylene terephthalate (PET) by region in 2011–2021 (in tonnes) ... 61
Figure 43: Worldwide production capacities of polyhydroxyalkanoates (PHA) by region in 2011–2021 (in tonnes) ... 62
Figure 44: Worldwide production capacities of polylactic acid (PLA) by region in 2011–2021 (in tonnes) ... 63
Figure 45: Worldwide production capacities of polytrimethylene terephthalate (PTT) by region in 2011–2021 (in tonnes) ... 64
Figure 46: Worldwide production capacities of starch blends by region in 2011–2021 (in tonnes) ... 65
Figure 47: Definition of GreenPremium Price (nova 2014) ... 226
Figure 48: Level of GreenPremium (in percentage) that would be paid for bio-based plastics, n = 47 (Status: 20 August 2013) ... 227
Figure 49: Analysis of GreenPremium prices along the value chain of different bio-based chemicals, plastics and end products. Coloured lines represent one value chain, single dots represent single findings ... 228
Figure 50: Acceptable price premium for bio-based materials in the automotive industry (in percentage). (Hasson and Mestanza 2011) ... 233
Figure 51: GreenPremium levels reported for bio-based plastics, October 2016 ... 235
Figure 52: Comparison of reported GreenPremium prices for bio-based plastics 2013 and 2016 236
8 List of tables

Table 1: Bio-based polymers, short names, current bio-based carbon content, producing companies with locations and production capacities from 2012 to 2016 with corresponding growth rates (nova-Institute 2016) ... 15
Table 2: Worldwide production capacities of 1,3-propanediol (1,3-PDO) in 2011–2021 (in tonnes) ... 36
Table 3: Worldwide production capacities of 1,4-butanediol (1,4-BDO) in 2011–2021 (in tonnes) ... 37
Table 4: Worldwide production capacities of 1,5-pentamethylenediamine (DN5) in 2011–2021 (in tonnes) ... 38
Table 5: Worldwide production capacities of 11-aminoundecanoic acid (11-AA) in 2011–2021 (in tonnes) ... 39
Table 6: Worldwide production capacities of 2,5-furandicarboxylic acid (2,5-FDCA) in 2011–2021 (in tonnes) ... 40
Table 7: Worldwide production capacities of adipic acid (AA) in 2011–2021 (in tonnes) .. 41
Table 8: Worldwide production capacities of dodecanedioic acid (DDDA) by region in 2011–2021 (in tonnes) ... 42
Table 9: Worldwide production capacities of D-lactic acid (D-LA) in 2011–2021 (in tonnes) ... 43
Table 10: Worldwide production capacities of epichlorohydrin (ECH) in 2011–2021 (in tonnes) ... 44
Table 11: Worldwide production capacities of ethylene in 2011–2021 (in tonnes) ... 45
Table 12: Worldwide production capacities of isosorbide in 2011–2021 (in tonnes) ... 46
Table 13: Worldwide production capacities of L-lactic acid (L-LA) in 2011–2021 (in tonnes) ... 47
Table 14: Worldwide production capacities of lactide in 2011–2021 (in tonnes) ... 48
Table 15: Worldwide production capacities of monoethylene glycol (MEG) in 2011–2021 (in tonnes) ... 49
Table 16: Worldwide production capacities of monopropylene glycol (MPG) in 2011–2021 (in tonnes) ... 50
Table 17: Worldwide production capacities of sebacic acid in 2011–2021 (in tonnes) ... 51
Table 18: Worldwide production capacities of succinic acid (SA) in 2011–2021 (in tonnes) ... 52
Table 19: Worldwide production capacities of cyclic aliphatic polycarbonate (APC – cyclic) in 2011–2021 (in tonnes) ... 53
Table 20: Worldwide production capacities of linear aliphatic polycarbonate (APC – linear) in 2011–2021 (in tonnes) ... 54
Table 21: Worldwide production capacities of ethylene propylene diene monomer rubber (EPDM) in 2011–2021 (in tonnes) ... 55
Table 22: Worldwide production capacities of polyamides (PA) in 2011–2021 (in tonnes) ... 56
Table 23: Worldwide production capacities of poly(butylene adipate-co-terephthalate) (PBAT) in 2011–2021 (in tonnes) ... 57
Table 24: Worldwide production capacities of polybutylene succinate (PBS) in 2011–2021 (in tonnes) ... 58
Table 25: Worldwide production capacities of polyethylene (PE) in 2011–2021 (in tonnes) ... 59
Table 26: Worldwide production capacities of polyethylene furanoate (PEF) in 2011–2021 (in tonnes) ... 60
Table 27: Worldwide production capacities of polyethylene terephthalate (PET) in 2011–2021 (in tonnes) ... 61
Table 28: Worldwide production capacities of polyhydroxyalkanoates (PHA) in 2011–2021 (in tonnes) ... 62
Table 29: Worldwide production capacities of poly(lactic acid) (PLA) in 2011–2021 (in tonnes) ... 63
Table 30: Worldwide production capacities of poly(trimethylene terephthalate) (PTT) in 2011–2021 (in tonnes) ... 64
Table 31: Worldwide production capacities of starch blends in 2011–2021 (in tonnes) ... 65
Table 32: Worldwide production capacities of cellulose acetate 2011–2021 ..218
Table 33: Worldwide production capacities of partly bio-based epoxy resins 2011–2021 (Total based on estimation) ..221
Table 34: Worldwide production capacities of bio-based polyurethanes 2011–2021 (Total based on estimation) ...222
Table 35: “What is the main reason why OEMs or tiers have or feel pressure for using more bio-based polymers?” (Hasson and Mestanza 2011) ..233
Table 36: “How much more would you expect to pay at the pump and still choose renewable fuels over regular fuels?” (Survey by US BiofuelsDigest 2014) ..234

Additional tables in chapter 4